Interfacial recognition by bee venom phospholipase A2: insights into nonelectrostatic molecular determinants by charge reversal mutagenesis.
نویسندگان
چکیده
The basis for tight binding of bee venom phospholipase A2 (bvPLA2) to anionic versus zwitterionic phospholipid interfaces is explored by charge reversal mutagenesis of basic residues (lysines/arginines to glutamates) on the putative membrane binding surface. Single-site mutants and, surprisingly, multisite mutants (2-5 of the 6 basic residues mutated) are fully functional on anionic vesicles. Mutants bind tightly to anionic vesicles, and active-site substrate and Ca2+ binding are not impaired. Multisite mutants undergo intervesicle exchange slightly faster than wild type, especially in the presence of salt. It is estimated that electrostatic contribution to interfacial binding is modest, perhaps 2-3 kcal/mol of the estimated 15 kcal/mol. Elution properties of bvPLA2 from HPLC columns containing solid phases of tightly packed monolayers of phosphocholine amphiphiles suggest that ionic effects provide a modest portion of the interfacial binding energy and that this contribution decreases as the number of cationic residues mutated is increased. These results are consistent with the observation that Gila monster venom PLA2 (Pa2), which is homologous to bvPLA2, has high activity on anionic vesicles despite the fact that it has only a single basic residue on its putative interfacial recognition face. Results with bvPLA2 mutants show that manoalogue and 12-epi-scalaradial inactivate bvPLA2 by modification of K94. Also, deletion of the large beta-loop (residues 99-118) is without consequence for interfacial binding and catalysis of bvPLA2. All together, the preferential binding of bvPLA2 to anionic vesicles versus phosphatidylcholine vesicles is mainly due to factors other than electrostatics. Therefore hydrogen-bonding and hydrophobic interactions must provide a major portion of the interfacial binding energy, and this is consistent with recent spectroscopic studies.
منابع مشابه
Interfacial binding of bee venom secreted phospholipase A2 to membranes occurs predominantly by a nonelectrostatic mechanism.
The secreted phospholipase A(2) from bee venom (bvPLA(2)) contains a membrane binding surface composed mainly of hydrophobic residues and two basic residues that come in close contact with the membrane. Previous studies have shown that the mutant in which these two basic residues (K14 and R23) as well as three other nearby basic residues were collectively changed to glutamate (charge reversal),...
متن کاملLocalization of structural elements of bee venom phospholipase A2 involved in N-type receptor binding and neurotoxicity.
We have shown previously that neurotoxic venom secretory phospholipases A2 (sPLA2s) have specific receptors in brain membranes called N-type receptors that are likely to play a role in the molecular events leading to neurotoxicity of these proteins. The sPLA2 found in honey bee venom is neurotoxic and binds to this receptor with high affinity. In this paper, we have used a number of mutants of ...
متن کاملBee venom processes human skin lipids for presentation by CD1a
Venoms frequently co-opt host immune responses, so study of their mode of action can provide insight into novel inflammatory pathways. Using bee and wasp venom responses as a model system, we investigated whether venoms contain CD1-presented antigens. Here, we show that venoms activate human T cells via CD1a proteins. Whereas CD1 proteins typically present lipids, chromatographic separation of ...
متن کاملCrystal structure of cobra-venom phospholipase A2 in a complex with a transition-state analogue.
The crystal structure of a complex between a phosphonate transition-state analogue and the phospholipase A2 (PLA2) from Naja naja atra venom has been solved and refined to a resolution of 2.0 angstroms. The identical stereochemistry of the two complexes that comprise the crystal's asymmetric unit indicates both the manner in which the transition state is stabilized and how the hydrophobic fatty...
متن کاملThe chemical basis for interfacial activation of monomeric phospholipases A2. Autocatalytic derivatization of the enzyme by acyl transfer from substrate.
A basic monomeric phospholipase A2 from the venom of the American water moccasin, Agkistrodon piscivorus piscivorus, undergoes Ca2+-dependent, autocatalytic acylation during the course of hydrolysis of both model and natural phospholipid substrates. Acylation occurs at 2 lysine residues, Lys-7 and Lys-10, in the NH2-terminal alpha-helical segment of the enzyme, and when both positions are fully...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 37 19 شماره
صفحات -
تاریخ انتشار 1998